Wednesday, September 17, 2014

Error Detection And Correction Methods-Cont

ƒ     Performance of Checksum
o    Detects all errors involving an odd number of bits
o    Detects most errors involving an even number of bits
o    One pattern remains elusive

Examples
Example 9.7

    Suppose a block of 16 bits need to be sent:   10101001 00111001
10101001
00111001
----------------
11100010    Sum
00011101    Checksum
    Sent pattern:
10101001 00111001 00011101
checksum

Example 9.8    Examples of no error and a burst error
Segment 1
Segment 2
Checksum
10101001 Segment1
00111001 Segment2
00011101 Checksum
----------------- ----------------
Sum                  11111111 Sum
Complement  00000000 Complement
10101111
11111001
00011101

11000110
00111001

    Error is invisible if a bit inversion is balanced by an opposite bit inversion in
the corresponding digit of another segment

Segment1         10111101
Segment2
Checksum

Sum

00101001
00011001
----------------------
11111111
®     The error is undetected
ERROR CORRECTION
o    Mechanisms that we have studied all detect errors but do not correct them

o    Error correction can be done in two ways:
-Receiver can ask Sender for  Re- TX
-Receiver  can  use  an  error-detecting  code,  which  automatically  correct  certain
errors
o    Error correcting code are more sophisticated than error detecting codes
o    They require more redundancy bits
o    The  number  of  bits  required  to  correct  multiple  -bit  or  burst  error  is  so  high
that in most cases it is inefficient
o    Error correction is limited to 1, 2 or 3 bit

   Single-bit Error Correction
Simplest case of error correction
o    Error   correction   requires   more   redundancy   bits   than   error
detection
o    One additional bit can detect single-bit errors
Š    Parity bit in VRC
Š    One bit for two states: error or no error
o    To correct the error, more bits are required
    Error correction locates the invalid bit or bits

8 states for 7-bit data: no error, error in bit 1, and so
on
    Looks like three bits of redundancy is adequate
    What if an error occurs in the redundancy bits?
Hamming Code
Redundancy Bits (r)
o    r must be able to indicate at least m+r+1 states
o    m+r+1 states must be discoverable by r bits
o    Therefore, 2r ³ m+r+1
o    If m=7, r=4 as 24 ³ 7+4+1

Hamming Code
Š    Each r bit is the VRC bit for one combination of data bits

    r1(r2) bit is calculated using all bit positions whose binary representation includes
a 1 in the first(second) position, and so on

No comments:

Post a Comment